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Abstract

A dense plasma focus (DPF) device was evaluated for the
feasibility of blue-green and near uv laser pumping. As the result of
optimizing the operating conditions of DPF and laser system, the
maximum untuned laser output exceeded 4.0 mJ corresponding to the
energy density 8.3J/liter which is much higher than the typical
flashlamp dye laser. The spectral irradiance of DPF at the absorption

bands for LD390 and LD490 were 5.5 W/cm2 -nm, and 0.3 W/cm 2 nm,
respectively. Due to the lower pump power of DPF at 355nm than the
threshold of LD390, the laser pumping of LD390 dye was not achieved.

A hard-core flashlamp (HCF) which has a coaxial geometry and
array of inverse pinches was also evaluated for blue-green and near
uv laser excitation. The short pulse (<0.51gs) surface discharges were
produced across the core insulator of teflon and alumina. The
spectral irradiance of the HCF depends on argon fill gas pressure and
the core insulating material. The maximum radiative output of the
HCF lie in the region of 340 - 400nm (absorption band of LD490). A
LD490 dye laser pumped by a HCF prototype device had an output of
0.9mJ with a pulse of 0.51gs (FWHM).
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I. Introduction

Importance of tunable ultraviolet lasers for photochemical
research and applications have led to several methods of producing
high power uv lasers below X - 350nm. Frequency doubled or tripled

high power uv lasers such as ion, ruby, Nd+ 3 , and visible dye lasers
as well as short wavelength excimer lasers are complex and
expensive systems themselves. Consequently, their applications
are limited. Therefore, availability of inexpensive flashlamp-
pumped high power dye lasers is desirable for the uv range. The
flashlamp pumped uv dye lasers are currently available only
wavelength above 330nm and their output energy (< 1J) are limited.
This is mainly due to the lack of uv emission from the flashlamp
used as the pump source. Efforts .o improve the flashlamp-
emission efficiency in the uv range have thus far met with limited
successes indicating that the radically different and new light
source are required. Such-reptitive sources as exploding wires or
foils which have been studied as intense uv sources for an iodine
laser are extreme examples (Ref. 1). Other examples are use of
dense plasma sources as investigated in the USSR laboratories for
high power laser pumping (Ref. 2, 3, 4). They produced dense plasma
by high current discharges but in a different regime than that of the
thermonuclear fusion device (or plasma devices). They report the
efficiency of over 70% in terms of the total radiated energy and over
I kJ of a gas laser output production in 0.251 to
1.04 gm.

Recently in the USA, dense plasma focuses produced inA,

hypocycloidal pinch array have been successfully employed for
various laser pumping (Ref. 5), especially, dye laser pumping at our
laboratory (Ref. 6) and at University of Illinois (Ref. 7). There also

'has been preliminary attempted using a coaxial-gun type plasma
focus device for dye laser pumping (Ref. 8). However, the optical

*! coupling and operational conditions of the plasma focus-laser
system have not been optimized in this preliminary test and further
investigation is necessary to evaluate its potential as a high-power
uv laser system.

In order to evaluate the feasibility of blue-green and near uv
laser pumping with the dense plasma focus (DPF) device, the
emission spectra of the DPF was analyzed in terms of current sheet
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velocity and spectral irradiance at the dye cuvette with different
type fill gas and fill gas pressure. Furthermore, laser output
characteristics of blue-green and near uv lasers with the DPF
pumping light were studied. Details are discussed in chapter I1.

A hard-core flashlamp (HCF) which has a coaxial geometry and an
array of inverse pinches was also evaluated for blue-green and near
uv laser excitation. Details are discussed in chapter II1.

I1. A dense plasma focus for blue-green and near uv dye laser

A high power blue-green laser has been pumped with the dense
plasma focus device similar to Ref. 9 and 10. As shown in figure 1,
new features include magnetic stabilization of the plasma and
optical coupling with an elliptical cylinder focussing mirror along Z

-axis and the laser gain medium at another foci. The device was
operated at 18kV (8.1kJ) with fill gas of 0.5Torr (90% deuterium and
10% argon). The measured maximum output energy of blue-green
laser approximately 4.0 mJ and output energy density was 8.3J/liter
which is much higher than the typical flashlamp pumped dye laser.
In order to determine the optimum conditions of pumping blue-green
and near uv laser, the emission characteristics (200-400nm), the
current sheet dynamics, the pressure, and input energy dependence

4. of the laser laser output were measured. Figure 2 shows a block

diagram of experimental set-up. Figure 3 shows average speed of
current sheet viewed from the side of electrodes as a function of
argon fill pressure. Experimental results indicate that the velocity
of current sheet is proportional to p-.46 where P is fill gas
pressure. The velocity of current sheet follows the snow plow

* model (v= P-0-5 ) as expected. Figure 4 shows the image-converter
photograph of the plasma focus discharge at the end-on view. The
size of focus is roughly 5mm in diameter and the radial speed is
order of 106 cm/sec. The typical side-on streak photographs of
discharge are shown in figure 5. In the photographs the vertical
white line indicates the position of the end electrode. Each vertical
black line indicates 5 cm. The time difference between current
sheets is about 7gs which agrees with the half-cycle period of the
electrical signal. Figure 6 shows the irradiance of the dense plasma
focus (DPF) as function of the applied magnetic field. The
irradiance of the DPF is about ten times less with the magnetic field
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0.8 Gauss than that with no magnetic field, even though shot to shot
variation of plasma intensity is less than the case of no magnetic
field (normal condition). When 20 Gauss is applied at the end of the
electrode, the irradiance of the DPF pumping light turns out to be
low, and the variation of plasma intensity is minimal. Thus, the
effect of the applied magnetic field to the DPF for stabilization
appears to be negative. The physical reason for this effect needs
more investigation. Figure 7 shows typical oscilloscope signals of
output voltage (top), pumping light (middle) and laser output energy
(bottom) from the DPF.

In order to determine the optimum operating conditions of the
DPF device for pumping blue-green and near dye laser, the spectral
irradiance of the DPF at the dye cuvette was measured as function of
the filling gas pressure for argon and deuterium mixture. Figure 8
shows the spectral irradiance as a function of argon fill gas
pressure. Figure 9 and 10 show the spectral irradiance of DPF at
355nm as function of the filling gas pressure of argon and deuterium
mixture. The peak value of the DPF emission was obtained at
pressure of 0.5Torr (10% Ar + 90% D2 ). The peak intensity with

argon gas in the DPF device was approximately 15 times less than
that for the mixture of argon and deuterium. The rise time of the
pumping light from the DPF device with argon gas and the mixture of
argon and deuterium was the same value of 132ns, respectively. As
a result, the total fill gas pressure of 0.5 Torr (10% Ar + 90% D2 )
was the best optimum condition for focussing.

Laser output energy of blue-green laser was also measured as a
-' function of argon fill pressure and output laser mirror (Fig. 11), and

dye concentration (Fig. 12), were measured. As a result of laser
cavity tuning, the maximum untuned laser output exceeded 4mJ.
Details of the HCF results are in references in 9 and 10.
The performance of LD490 dye laser is shown as follows

Laser peak wavelength (untuned) 495 nm
Maximum peak power 4 kW
Maximum pulse energy 4 mJ
Pulse energy density (Max.) 8.3 J/liter
Pulse length (FWHM) 0.5 gis
Angular divergence 5 mrad
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Ill. Hard-core flashlamp for blue-green laser excitation

The hard-core flashlamp (HCF), which is an array of inverse
pinches and initiated by the surface discharges, had some
advantages that make it a desirable light source for the excitation
of blue-green and near uv lasers (Ref. 11). The major advantages are
the fast current risetime (less than 0.51gs which was about three

• "times faster than that could be obtained with conventional
flashlamp driven by the identical external circuit.) and the feature
that the radiation be focussed in a linear cell by an external
reflector. This feature is in contrast to the coaxial flashlamp (Ref.
12) and the hypocycloidal pinch (Ref. 13) array in which a laser tube
is inserted for close coupling without any focusability.

The experimental setup consists of 1.01F-40kV capacitor, its
charging circuit and a vacuum chamber which houses the HCF as the
pump source and a dye cell (Fig. 13). The inner surface of the
vacuum chamber is used as a cylindrical mirror for focussing light

* .- to the dye cell. The stored energy used to drive the HCF was varied
- .-.- upto 200J. A short (0.2m) transmission line coupled the capacitor

and the HCF via an inverse-pinch switch of a low inductance (Ref.
14). The measured rise time of the emission in near uv was less
than 0.5gs and the use of high pressure (upto 760 Torr) in the
chamber prevented the radial motion of the plasma and the increase
of the inductance of the HCF. The pulse widths of the emission were
within I ls. Figure 14 shows the spectral irradiance of the HCF
monitored with an optical multichannel analyzer (EG&G). With low

,. fill gas pressure of argon (0.2 Torr) near uv output is observed
stronger than the visible one, while high fill gas pressure of argon

* (760 Torr) the visible continum is enhanced. It was observed that
near uv output of the HCF with alumina insulator core was much
higher than that with teflon, and also the radiation output from the
HCF increased linearly by a factor of three as argon fill gas pressure
increased from 300 Torr to 760 Torr (Fig. 15). These results
demonstrate that the source radiance spectrum can be varied with
the fill gas type, pressure and material of the core insulator. Figure
16 shows that the pump rate (which is defined to be the ratio of the
peak intensity of the radiative output and its risetime) and laser
output energy are function of argon fill gas pressure. Figure 15 and
16 indicates that both the pump rate and the corresponding laser
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output increase as argon fill gas pressure increases from 200 Torr
to 760 Torr as expected. The maximum laser output obtained was
0.9 mJ with peak power of 2 kW. The corresponding energy
extraction density is 45J/liter. Details are in Ref. 15.

IV. SUMMARY AND CONCLUSION

A dense plasma focus (DPF) was successfully employed for
pumping a dye laser with LD490. The filling gas of 0.5 Torr
(10% argon and 90% deuterium mixture) was found to be the
optimum. The maximum output energy of the dye laser was 4.0 mJ
with 0.51gs halfwidth. The wavelength of the peak laser output was
495nm with 5 mrad of divergence angle. For the case of LD390 dye,
the pump power of the DPF was not sufficient to achieve a lasing.
For the elliptical mirror used, the optical coupling efficiency was
only 20%. The solid angle between the surface of the reflector and

the source was approximately 0 = 370, which corresponds to 10% of
the whole radiation. The threshold energy required for the LD390
will be reached by either improving the coupling efficiency ..f
reflector or increasing the input energy to the DPF device or both.

-. The concept of a new light source, hard core flashlamp, was
investigated with a prototype, and its advantages over the other
sources have been verified. The emission spectra of the HCF show
that spectral modifications for the pump bands of dye laser media
can be made. Laser excitation of LD490 was achieved with high
pressure argon gas in HCF, and laser output of 0.9mJ was obtained
with the pulse width of 0.51gs. The HCF's line focusability was
advantageously utilized for forming the laser pump geometry.

* However, improvements with an elliptical reflector and use of
higher driving energy for HCF are left for the future work.

6.,
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